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APPARATUS AND METHOD FOR
MEMORY-MAPPED REGISTER CACHING

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of computer
processors. More particularly, the invention relates to an
apparatus and method for memory-mapped register caching.

2. Description of the Related Art

Current throughput processing implementations use
highly threaded processor architectures to compensate for
memory access and execution latencies. With this approach,
each thread has its own set of registers within a dedicated
Main Register File (MRF), yielding an enormous register file
which consumes a significant amount of power.

In current implementations, the MRF is not directly related
to the L1 data cache. Consequently, whenever there is a load
operation, data must first be read from the memory subsystem
(possibly from the cache) and placed into the MRF, consum-
ing processing cycles and space within the MRF.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, in which:

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention;

FIG. 1B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention;

FIG. 2 is a block diagram of a single core processor and a
multicore processor with integrated memory controller and
graphics according to embodiments of the invention;

FIG. 3 illustrates a block diagram of a system in accor-
dance with one embodiment of the present invention;

FIG. 4 illustrates a block diagram of a second system in
accordance with an embodiment of the present invention;

FIG. 5 illustrates a block diagram of a third system in
accordance with an embodiment of the present invention;

FIG. 6 illustrates a block diagram of a system on a chip
(SoC) in accordance with an embodiment of the present
invention;

FIG. 7 illustrates a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention;

FIGS. 8-15 illustrate an exemplary architecture for imple-
menting memory-mapped register caching.

FIGS. 16A and 16B are block diagrams illustrating a
generic vector friendly instruction format and instruction
templates thereof according to embodiments of the invention;

FIGS. 17A-D are a block diagrams illustrating an exem-
plary specific vector friendly instruction format according to
embodiments of the invention; and

FIG. 18 is ablock diagram of a register architecture accord-
ing to one embodiment of the invention.

FIG. 19 illustrates a computer system in accordance with
certain embodiments of the invention.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in orderto provide
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2

a thorough understanding of the embodiments of the inven-
tion described below. It will be apparent, however, to one
skilled in the art that the embodiments of the invention may be
practiced without some of these specific details. In other
instances, well-known structures and devices are shown in
block diagram form to avoid obscuring the underlying prin-
ciples of the embodiments of the invention.

Exemplary Processor Architectures and Data Types

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 1B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
1A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 1A, a processor pipeline 100 includes a fetch stage
102, a length decode stage 104, a decode stage 106, an allo-
cation stage 108, a renaming stage 110, a scheduling (also
known as a dispatch or issue) stage 112, a register read/
memory read stage 114, an execute stage 116, a write back/
memory write stage 118, an exception handling stage 122,
and a commit stage 124.

FIG. 1B shows processor core 190 including a front end
unit 130 coupled to an execution engine unit 150, and both are
coupled to amemory unit 170. The core 190 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 190 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 130 includes a branch prediction unit
132 coupled to an instruction cache unit 134, which is
coupled to an instruction translation lookaside buffer (TLB)
136, which is coupled to an instruction fetch unit 138, which
is coupled to a decode unit 140. The decode unit 140 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, microcode entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 140
may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 190 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 140 or otherwise within
the front end unit 130). The decode unit 140 is coupled to a
rename/allocator unit 152 in the execution engine unit 150.

The execution engine unit 150 includes the rename/alloca-
tor unit 152 coupled to a retirement unit 154 and a set of one
or more scheduler unit(s) 156. The scheduler unit(s) 156
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 156 is coupled to the physical register file(s)
unit(s) 158. Each of the physical register file(s) units 158
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
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integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit 158 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units
may provide architectural vector registers, vector mask reg-
isters, and general purpose registers. The physical register
file(s) unit(s) 158 is overlapped by the retirement unit 154 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and a retirement register file(s); using a future file(s),
a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement unit
154 and the physical register file(s) unit(s) 158 are coupled to
the execution cluster(s) 160. The execution cluster(s) 160
includes a set of one or more execution units 162 and a set of
one or more memory access units 164. The execution units
162 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 156,
physical register file(s) unit(s) 158, and execution cluster(s)
160 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 164). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 164 is coupled to the
memory unit 170, which includes a data TLB unit 172
coupled to a data cache unit 174 coupled to a level 2 (L2)
cache unit 176. In one exemplary embodiment, the memory
access units 164 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 172 in the memory unit 170. The instruction cache unit
134 is further coupled to a level 2 (L.2) cache unit 176 in the
memory unit 170. The L2 cache unit 176 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 100 as follows: 1) the instruction fetch 138 performs
the fetch and length decoding stages 102 and 104; 2) the
decode unit 140 performs the decode stage 106; 3) the
rename/allocator unit 152 performs the allocation stage 108
and renaming stage 110; 4) the scheduler unit(s) 156 per-
forms the schedule stage 112; 5) the physical register file(s)
unit(s) 158 and the memory unit 170 perform the register
read/memory read stage 114; the execution cluster 160 per-
form the execute stage 116; 6) the memory unit 170 and the
physical register file(s) unit(s) 158 perform the write back/
memory write stage 118; 7) various units may be involved in
the exception handling stage 122; and 8) the retirement unit
154 and the physical register file(s) unit(s) 158 perform the
commit stage 124.
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The core 190 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
190 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX2, and/or some form of the
generic vector friendly instruction format (U=0 and/or U=1),
described below), thereby allowing the operations used by
many multimedia applications to be performed using packed
data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 134/174 and a shared L2
cache unit 176, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

FIG. 2 is a block diagram of a processor 200 that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention. The solid lined boxes in FIG. 2 illus-
trate a processor 200 with a single core 202A, a system agent
210, a set of one or more bus controller units 216, while the
optional addition of the dashed lined boxes illustrates an
alternative processor 200 with multiple cores 202A-N, asetof
one or more integrated memory controller unit(s) 214 in the
system agent unit 210, and special purpose logic 208.

Thus, different implementations of the processor 200 may
include: 1) a CPU with the special purpose logic 208 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
202A-N being one or more general purpose cores (e.g., gen-
eral purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 202A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 202A-N being a
large number of general purpose in-order cores. Thus, the
processor 200 may be a general-purpose processor, coproces-
sor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 200 may be a part of and/or may be
implemented on one or more substrates using any of a number
of process technologies, such as, for example, BICMOS,
CMOS, or NMOS.
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The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
206, and external memory (not shown) coupled to the set of
integrated memory controller units 214. The set of shared
cache units 206 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 212 interconnects the integrated graphics logic 208, the
set of shared cache units 206, and the system agent unit
210/integrated memory controller unit(s) 214, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 206 and
cores 202-A-N.

In some embodiments, one or more of the cores 202A-N
are capable of multi-threading. The system agent 210
includes those components coordinating and operating cores
202A-N. The system agent unit 210 may include for example
a power control unit (PCU) and a display unit. The PCU may
be or include logic and components needed for regulating the
power state of the cores 202A-N and the integrated graphics
logic 208. The display unit is for driving one or more exter-
nally connected displays.

The cores 202A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 202A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.

FIGS. 3-6 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 3, shown is a block diagram of a
system 300 in accordance with one embodiment of the
present invention. The system 300 may include one or more
processors 310, 315, which are coupled to a controller hub
320. In one embodiment the controller hub 320 includes a
graphics memory controller hub (GMCH) 390 and an Input/
Output Hub (IOH) 350 (which may be on separate chips); the
GMCH 390 includes memory and graphics controllers to
which are coupled memory 340 and a coprocessor 345; the
IOH 350 is couples input/output (I/O) devices 360 to the
GMCH 390. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 340 and the coprocessor 345
are coupled directly to the processor 310, and the controller
hub 320 in a single chip with the IOH 350.

The optional nature of additional processors 315 is denoted
in FIG. 3 with broken lines. Each processor 310, 315 may
include one or more of the processing cores described herein
and may be some version of the processor 200.

The memory 340 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 320 communicates with the processor(s) 310,
315 via a multi-drop bus, such as a frontside bus (FSB),
point-to-point interface such as QuickPath Interconnect
(QPI), or similar connection 395.
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In one embodiment, the coprocessor 345 is a special-pur-
pose processor, such as, for example, a high-throughput MIC
processor, a network or communication processor, compres-
sion engine, graphics processor, GPGPU, embedded proces-
sor, or the like. In one embodiment, controller hub 320 may
include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 310, 315 in terms of a spectrum of metrics of merit
including architectural, microarchitectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 310 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 310 recognizes these coprocessor
instructions as being of a type that should be executed by the
attached coprocessor 345. Accordingly, the processor 310
issues these coprocessor instructions (or control signals rep-
resenting coprocessor instructions) on a coprocessor bus or
other interconnect, to coprocessor 345. Coprocessor(s) 345
accept and execute the received coprocessor instructions.

Referring now to FIG. 4, shown is a block diagram of a first
more specific exemplary system 400 in accordance with an
embodiment of the present invention. As shown in FIG. 4,
multiprocessor system 400 is a point-to-point interconnect
system, and includes a first processor 470 and a second pro-
cessor 480 coupled via a point-to-point interconnect 450.
Each of processors 470 and 480 may be some version of the
processor 200. In one embodiment of the invention, proces-
sors 470 and 480 are respectively processors 310 and 315,
while coprocessor 438 is coprocessor 345. In another
embodiment, processors 470 and 480 are respectively proces-
sor 310 coprocessor 345.

Processors 470 and 480 are shown including integrated
memory controller (IMC) units 472 and 482, respectively.
Processor 470 also includes as part of its bus controller units
point-to-point (P-P) interfaces 476 and 478; similarly, second
processor 480 includes P-P interfaces 486 and 488. Proces-
sors 470, 480 may exchange information via a point-to-point
(P-P) interface 450 using P-P interface circuits 478, 488. As
shown in FIG. 4, IMCs 472 and 482 couple the processors to
respective memories, namely a memory 432 and a memory
434, which may be portions of main memory locally attached
to the respective processors.

Processors 470, 480 may each exchange information with
a chipset 490 via individual P-P interfaces 452, 454 using
point to point interface circuits 476, 494, 486, 498. Chipset
490 may optionally exchange information with the coproces-
sor 438 via a high-performance interface 439. In one embodi-
ment, the coprocessor 438 is a special-purpose processor,
such as, for example, a high-throughput MIC processor, a
network or communication processor, compression engine,
graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 490 may be coupled to a first bus 416 via an
interface 496. In one embodiment, first bus 416 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 4, various [/O devices 414 may be
coupled to first bus 416, along with a bus bridge 418 which
couples first bus 416 to a second bus 420. In one embodiment,
one or more additional processor(s) 415, such as coproces-
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sors, high-throughput MIC processors, GPGPU’s, accelera-
tors (such as, e.g., graphics accelerators or digital signal pro-
cessing (DSP) units), field programmable gate arrays, or any
other processor, are coupled to first bus 416. In one embodi-
ment, second bus 420 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 420 includ-
ing, for example, a keyboard and/or mouse 422, communica-
tion devices 427 and a storage unit 428 such as a disk drive or
other mass storage device which may include instructions/
code and data 430, in one embodiment. Further, an audio I/O
424 may be coupled to the second bus 420. Note that other
architectures are possible. For example, instead of the point-
to-point architecture of FIG. 4, a system may implement a
multi-drop bus or other such architecture.

Referring now to FIG. 5, shown is a block diagram of a
second more specific exemplary system 500 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 4 and 5 bear like reference numerals, and certain
aspects of FIG. 4 have been omitted from FIG. 5 in order to
avoid obscuring other aspects of FIG. 5.

FIG. 5 illustrates that the processors 470, 480 may include
integrated memory and I/O control logic (“CL”") 472 and 482,
respectively. Thus, the CL 472, 482 include integrated
memory controller units and include I/O control logic. FIG. 5
illustrates that not only are the memories 432, 434 coupled to
the CL 472,482, but also that I/O devices 514 are also coupled
to the control logic 472, 482. Legacy 1/O devices 515 are
coupled to the chipset 490.

Referring now to FIG. 6, shown is a block diagram ofa SoC
600 in accordance with an embodiment of the present inven-
tion. Similar elements in FIG. 2 bear like reference numerals.
Also, dashed lined boxes are optional features on more
advanced SoCs. In FIG. 6, an interconnect unit(s) 602 is
coupled to: an application processor 610 which includes a set
of'one or more cores 202A-N and shared cache unit(s) 206; a
system agent unit 210; a bus controller unit(s) 216; an inte-
grated memory controller unit(s) 214; a set or one or more
coprocessors 620 which may include integrated graphics
logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
630; a direct memory access (DMA) unit 632; and a display
unit 640 for coupling to one or more external displays. In one
embodiment, the coprocessor(s) 620 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 430 illustrated in FIG. 4, may
be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
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desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 7 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 7 shows a program in a
high level language 702 may be compiled using an x86 com-
piler 704 to generate x86 binary code 706 that may be natively
executed by a processor with at least one x86 instruction set
core 716. The processor with at least one x86 instruction set
core 716 represents any processor that can perform substan-
tially the same functions as an Intel processor with at least one
x86 instruction set core by compatibly executing or otherwise
processing (1) a substantial portion of the instruction set of
the Intel x86 instruction set core or (2) object code versions of
applications or other software targeted to run on an Intel
processor with at least one x86 instruction set core, in order to
achieve substantially the same result as an Intel processor
with at least one x86 instruction set core. The x86 compiler



US 9,189,398 B2

9

704 represents a compiler that is operable to generate x86
binary code 706 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 716. Similarly, FI1G.
7 shows the program in the high level language 702 may be
compiled using an alternative instruction set compiler 708 to
generate alternative instruction set binary code 710 that may
be natively executed by a processor without at least one x86
instruction set core 714 (e.g., a processor with cores that
execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, Calif. and/or that execute the ARM instruction set
of ARM Holdings of Sunnyvale, Calif.). The instruction con-
verter 712 is used to convert the x86 binary code 706 into code
that may be natively executed by the processor without an x86
instruction set core 714. This converted code is not likely to be
the same as the alternative instruction set binary code 710
because an instruction converter capable of this is difficult to
make; however, the converted code will accomplish the gen-
eral operation and be made up of instructions from the alter-
native instruction set. Thus, the instruction converter 712
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other pro-
cess, allows a processor or other electronic device that does
not have an x86 instruction set processor or core to execute
the x86 binary code 706.

Memory Mapped Register Caching

A register file must sustain high bandwidth data paths
between itself and the functional units of the processor. To
accomplish this goal, it must have a high port count, making
the register file area large and power hungry. Because of the
need to implement a large number of registers due to current
highly threaded architectures, the register file is increased in
size to a point which is either un-implementable or becomes
a critical path that limits the processor’s theoretical attainable
frequency.

Prior work has been done to implement a relatively small
register cache such that the small register cache supplies the
needed bandwidth while the full register array bandwidth
requirements are reduced. This scheme also reduces power
since the cache access power is small relative to the power
consumed for register array access. The number of cached
registers is determined by the latency between a load and use
of'the loaded data by an execution command. Typically, sev-
eral instructions separate the load operation from the execu-
tion command, thereby consuming space in the register file
with data that is not used for several processor cycles.

The embodiments of the invention described below solve
these and other problems. In one embodiment, the main reg-
ister file (MRF) is implemented as a register file cache (RFC)
and combined with the .1 data cache array. When a load
command is executed, instead of moving data from the L1
data cache array, a tag lookup occurs and the physical location
of the data in the data array is pointed to by a pointer in the
data location table (DLT). Later, when the execution opera-
tion arrives, the data is moved directly into the RFC. This
allows the RFC to be smaller since it does not need to hold the
data for several processor cycles leading up to the actual use
of the data by the execution operation. Moreover, the same
data stored in the [.1 data cache may be used by different
threads. Modified register data is subsequently written back
to the register area in the .1 data cache, in which case it is no
longer associated with the memory cache line.

Additionally, the embodiments of the invention reduce the
size of the register cache by fetching the data into the register
cache just in time and reduce the number of data transfers
from 3 transfers to 2 (as described in the example below).
Register-to-register data movement is also eliminated by
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changing the pointer in the DLT to where the data is currently
stored (rather than actually moving the data). If a program or
thread uses a subset of the registers at a certain time, then the
memory addresses associated with the recently unused reg-
isters need not be contained in the processor storage. In this
case, the cache data storage resource may be used for normal
memory caching. The embodiments of the invention also
allow for low overhead registers for saves and restores upon a
context switch, using the same memory subsystem imple-
mentation serving the data cache and register shadow storage.

FIG. 8 illustrates the processor components used in one
embodiment of the invention, including a plurality of execu-
tion units and address generation units 803, a Data Location
Table (DLT) 801, a register cache 804 and a .1 data cache
including a L1 data array 805 and .1 tag array 802. Notably,
no main register file (MRF) is used in this embodiment. As
described below, the register cache 804 is used to provide the
functions of the MRF but in a more efficient manner.

In one embodiment, the DLT 801 is implemented as a
lookup table with an entry for every architectural register
used by the instruction threads (maintained as a row in the
table). For example, in an x86 implementation, the DLT con-
tains entries for each x86 architectural register.

In one embodiment, the underlying data for each architec-
tural register may be located in one of three locations, which
may be identified by the DLT 801:

1) the L1 data architectural register area;

2) the L1 data memory area; and/or

3) the register cache 804.

For each architectural register, the DLT holds pointers to the
un-cached location of the register and, if cached, to the reg-
ister cache location. In one embodiment, the register cache
804 does not rely on a tag structure as used in a standard data
cache; it relies solely on the DLT to identify the register
location.

One example of system operation will be described with
respect to FIGS. 9 to 15 which show an exemplary flow of
operations to execute a typical instruction sequence. In this
particular example, two data elements located in memory are
multiplied and the result is stored in a third memory location.

As illustrated in FIG. 9, the DLT may be implemented as a
lookup table with each row representing a particular archi-
tectural register (e.g., B1, B2, 11,12, R1, TMPO, R3, etc). The
first column (RF) provides a first pointer identifying the loca-
tion of the architectural register data within the register cache
804 (if stored in the register cache) and a second column
(L18) provides a pointer to a location where the architectural
register data is stored in the L1 data cache 805. These pointers
are continually updated so that the current location of the
architectural register data can be readily identified. In one
embodiment, the L1 pointers do not require a traditional
lookup using tags. Rather, the [.1 and register cache pointers
are direct pointers to the set and way where the data is located
(i.e., the physical address of the data). No additional layer of
abstraction is used to identify the data, resulting in an
extremely efficient lookup operation.

In the specific example shown in FIG. 9, the initial opera-
tion requires calculating an address by combining the base
and index values. In the example, M1 (memory location 1) is
calculated using basel and index1 and M2 is calculated using
base2 and index2. In the example, the base and index values
are not currently stored in the register cache 804. As such, the
DLT is referenced to identify the location of these values
within the architectural register storage area of the L1 cache
805. Thus, the pointer from the DLT is read and the values are
moved from the [.1 cache into the register cache 804 in order
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to perform the memory calculations. The DLT may then be
updated to reflect the new location of the values (within the
register cache 804).

As illustrated in FIG. 10, an address generation unit 803
combines the base and index values now stored in the register
cache 804 to generate an the two memory addresses M1 and
M2. In the example shown in FIG. 10, the L1 tags 802 are
checked to determine whether the data is stored in the L1
cache. If there is a hit on the L1 tags 802, this means that the
data is already stored in the L1 cache and the physical address
for the location of the data can be read from the L1 column in
the DLT 801. In such a case, this data is placed into the TMPO
and R1 architectural registers simply by changing the pointer
to the data within the DLT 801 (i.e., the data is not physically
moved—only the pointer for the TMPO and R1 entries in the
DLT are updated).

In the case of an L1 miss (i.e., the data is not in in the L1
cache 805) the data must be located in a lower level cache
(LLC) 806 (or from memory if not in the LL.C). The arrows in
FIG. 10 indicate that, in this example, the data is read from the
LLC into the L1 cache. In such a case, the DLT is updated to
reflect the new location of the data.

FIG. 11 illustrates the data for the multiply operation being
loaded from the L1 cache 805 into the register cache 804
using the addresses MO and M1 (determined as described
above) just in time for the multiply operation (performed in
FIG. 12). Because the data is brought into the register cache
804 just in time, it can be made small compared to the main
register files of current processors. For example, in current
implementations, a compiler would cause the data to be
stored in the register file or register cache several cycles prior
to execution, which increases pressure on the cache. How-
ever, in the system described herein, the address phase is
executed with the load operation, but the data is not brought
into the register cache 804 until it is actually needed.

FIG. 12 illustrates the execution of the multiply operation
using the data collected in the previous steps. For this opera-
tion, the source data in architectural registers R1 and TMPO
has been stored in the register cache 804. The execution unit
803 performs the multiply operation using this data and stores
the resultin architectural register R3. The DLT 801 is updated
with a new pointer to the register cache to reflect the new data
stored in architectural register R3.

FIG. 13 begins the process to store the result of the multiply
operation. The first step is to determine where the data will be
stored (STA=store address and M3 is the memory address to
which the data will be stored). The pointers for the base and
index needed for the address calculation is transferred from
the architectural area of the [.1 cache into the register cache
804. An address generation unit 803 combines the base and
index values now stored in the register cache 804 to generate
the memory address M3.

In the example shown in FIG. 14, the L1 tags 802 are
checked to determine whether the address is stored in the L1
cache. If there is a hit on the L1 tags 802, this means that the
data is already stored in the L1 cache and the physical address
for the location of the data can be read from the L1 column in
the DLT 801. In such a case, this data is placed into the
architectural registers of the register cache simply by chang-
ing the pointer to the data within the DLT 801 (i.e., the data is
not physically moved—only the pointer in the DLT is
updated). Inthe case ofan [.1 miss (i.e., the datais not in in the
L1 cache 805) the data must be located in a lower level cache
(LLC) 806 (or from memory if not in the LLC).

FIG. 15 illustrates the store data operation, storing the data
to the architectural register area of the L1 data cache 805. The
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pointer to the data is updated in the DLT 801 so that it may be
readily identified in the [.1 cache for subsequent operations.

The embodiments of the invention significantly reduce the
size of the register file and are particularly useful when used
in processors which execute single instruction multiple data
(SIMD) instructions or other vector instruction types which
pack multiple data elements into a single register. In tradi-
tional vector systems, the vector registers have a fixed size
(e.g., 128 bits, 512 bits, etc) but, in some cases, the high order
bits of the vector registers may not be used (depending on the
element size and instruction). This results in an inefficient use
of register space. The present invention solves this problem
because a dedicated vector/SIMD register is not required for
storing the data elements. Rather, the data elements are sim-
ply stored in the register cache and architectural register
region of the .1 data cache and consume no more space than
required. In other words, with a register cache such as
described herein, only the data which is required is stored
(and no space is unnecessarily wasted).

Another benefit of the above embodiments of the invention
is that dedicated save/restore registers are not required on a
context switch or other mechanism for saving and restoring
thread state. Rather, the data is already mapped to memory so
there is no need to explicitly save the context.

Exemplary Instruction Formats

Embodiments of the instruction(s) described herein may be
embodied in different formats. Additionally, exemplary sys-
tems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such
systems, architectures, and pipelines, but are not limited to
those detailed.

A vector friendly instruction format is an instruction for-
mat that is suited for vector instructions (e.g., there are certain
fields specific to vector operations). While embodiments are
described in which both vector and scalar operations are
supported through the vector friendly instruction format,
alternative embodiments use only vector operations the vec-
tor friendly instruction format.

FIGS. 16 A-16B are block diagrams illustrating a generic
vector friendly instruction format and instruction templates
thereof according to embodiments of the invention. FIG. 16 A
is a block diagram illustrating a generic vector friendly
instruction format and class A instruction templates thereof
according to embodiments of the invention; while FIG. 16B is
a block diagram illustrating the generic vector friendly
instruction format and class B instruction templates thereof
according to embodiments of the invention. Specifically, a
generic vector friendly instruction format 1100 for which are
defined class A and class B instruction templates, both of
which include no memory access 1105 instruction templates
and memory access 1120 instruction templates. The term
generic in the context of the vector friendly instruction format
refers to the instruction format not being tied to any specific
instruction set.

While embodiments of the invention will be described in
which the vector friendly instruction format supports the
following: a 64 byte vector operand length (or size) with 32
bit (4 byte) or 64 bit (8 byte) data element widths (or sizes)
(and thus, a 64 byte vector consists of either 16 doubleword-
size elements or alternatively, 8 quadword-size elements); a
64 byte vector operand length (or size) with 16 bit (2 byte) or
8 bit (1 byte) data element widths (or sizes); a 32 byte vector
operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16
bit (2 byte), or 8 bit (1 byte) data element widths (or sizes);
and a 16 byte vector operand length (or size) with 32 bit (4
byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data
element widths (or sizes); alternative embodiments may sup-
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port more, less and/or different vector operand sizes (e.g., 256
byte vector operands) with more, less, or different data ele-
ment widths (e.g., 128 bit (16 byte) data element widths).

The class A instruction templates in FIG. 16A include: 1)
within the no memory access 1105 instruction templates there
is shown a no memory access, full round control type opera-
tion 1110 instruction template and a no memory access, data
transform type operation 1115 instruction template; and 2)
within the memory access 1120 instruction templates there is
shown a memory access, temporal 1125 instruction template
and a memory access, non-temporal 1130 instruction tem-
plate. The class B instruction templates in FIG. 16B include:
1) within the no memory access 1105 instruction templates
there is shown a no memory access, write mask control,
partial round control type operation 1112 instruction template
and a no memory access, write mask control, vsize type
operation 1117 instruction template; and 2) within the
memory access 1120 instruction templates there is shown a
memory access, write mask control 1127 instruction tem-
plate.

The generic vector friendly instruction format 1100
includes the following fields listed below in the order illus-
trated in FIGS. 17A-17B.

Format field 1140—a specific value (an instruction format
identifier value) in this field uniquely identifies the vector
friendly instruction format, and thus occurrences of instruc-
tions in the vector friendly instruction format in instruction
streams. As such, this field is optional in the sense that it is not
needed for an instruction set that has only the generic vector
friendly instruction format.

Base operation field 1142—its content distinguishes dif-
ferent base operations.

Register index field 1144—its content, directly or through
address generation, specifies the locations of the source and
destination operands, be they in registers or in memory. These
include a sufficient number of bits to select N registers from a
PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024) register file.
While in one embodiment N may be up to three sources and
one destination register, alternative embodiments may sup-
port more or less sources and destination registers (e.g., may
support up to two sources where one of these sources also acts
as the destination, may support up to three sources where one
of'these sources also acts as the destination, may support up to
two sources and one destination).

Modifier field 1146—its content distinguishes occurrences
of instructions in the generic vector instruction format that
specify memory access from those that do not; that is,
between no memory access 1105 instruction templates and
memory access 1120 instruction templates. Memory access
operations read and/or write to the memory hierarchy (in
some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations are
registers). While in one embodiment this field also selects
between three different ways to perform memory address
calculations, alternative embodiments may support more,
less, or different ways to perform memory address calcula-
tions.

Augmentation operation field 1150—its content distin-
guishes which one of a variety of different operations to be
performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this
field is divided into a class field 1168, an alpha field 1152, and
a beta field 1154. The augmentation operation field 1150
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions.
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Scale field 1160—its content allows for the scaling of the
index field’s content for memory address generation (e.g., for
address generation that uses 2°°“**index+base).

Displacement Field 1162A—its content is used as part of
memory address generation (e.g., for address generation that
uses 2°°“““*index+base+displacement).

Displacement Factor Field 1162B (note that the juxtaposi-
tion of displacement field 1162A directly over displacement
factor field 1162B indicates one or the other is used)—its
content is used as part of address generation; it specifies a
displacement factor that is to be scaled by the size of a
memory access (N)—where N is the number of bytes in the
memory access (e.g., for address generation that uses
2scalexindex +base+scaled displacement). Redundant low-or-
der bits are ignored and hence, the displacement factor field’s
content is multiplied by the memory operands total size (N) in
order to generate the final displacement to be used in calcu-
lating an effective address. The value of N is determined by
the processor hardware at runtime based on the full opcode
field 1174 (described herein) and the data manipulation field
1154C. The displacement field 1162A and the displacement
factor field 1162B are optional in the sense that they are not
used for the no memory access 1105 instruction templates
and/or different embodiments may implement only one or
none of the two.

Data element width field 1164—its content distinguishes
which one of a number of data element widths is to be used (in
some embodiments for all instructions; in other embodiments
for only some of the instructions). This field is optional in the
sense that it is not needed if only one data element width is
supported and/or data element widths are supported using
some aspect of the opcodes.

Write mask field 1170—its content controls, on a per data
element position basis, whether that data element position in
the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction
templates support merging-writemasking, while class B
instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of
elements in the destination to be protected from updates dur-
ing the execution of any operation (specified by the base
operation and the augmentation operation); in other one
embodiment, preserving the old value of each element of the
destination where the corresponding mask bit has a 0. In
contrast, when zeroing vector masks allow any set of ele-
ments in the destination to be zeroed during the execution of
any operation (specified by the base operation and the aug-
mentation operation); in one embodiment, an element of the
destination is set to 0 when the corresponding mask bit has a
0 value. A subset of this functionality is the ability to control
the vector length ofthe operation being performed (that is, the
span of elements being modified, from the first to the last
one); however, it is not necessary that the elements that are
modified be consecutive. Thus, the write mask field 1170
allows for partial vector operations, including loads, stores,
arithmetic, logical, etc. While embodiments of the invention
are described in which the write mask field’s 1170 content
selects one of a number of write mask registers that contains
the write mask to be used (and thus the write mask field’s
1170 content indirectly identifies that masking to be per-
formed), alternative embodiments instead or additional allow
the mask write field’s 1170 content to directly specify the
masking to be performed.

Immediate field 1172—its content allows for the specifi-
cation of an immediate. This field is optional in the sense that
is it not present in an implementation of the generic vector
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friendly format that does not support immediate and it is not
present in instructions that do not use an immediate.

Class field 1168—its content distinguishes between difter-
ent classes of instructions. With reference to FIGS. 16A-B,
the contents of this field select between class A and class B
instructions. In FIGS. 16A-B, rounded corner squares are
used to indicate a specific value is present in a field (e.g., class
A 1168A and class B 1168B for the class field 1168 respec-
tively in FIGS. 16 A-B).

Instruction Templates of Class A

In the case of the non-memory access 1105 instruction
templates of class A, the alpha field 1152 is interpreted as an
RS field 1152 A, whose content distinguishes which one of the
different augmentation operation types are to be performed
(e.g.,round 1152A.1 and data transform 1152A.2 are respec-
tively specified for the no memory access, round type opera-
tion 1110 and the no memory access, data transform type
operation 1115 instruction templates), while the beta field
1154 distinguishes which of the operations of the specified
type is to be performed. In the no memory access 1105
instruction templates, the scale field 1160, the displacement
field 1162A, and the displacement scale filed 1162B are not
present.

No-Memory Access Instruction Templates—Full Round
Control Type Operation

In the no memory access full round control type operation
1110 instruction template, the beta field 1154 is interpreted as
a round control field 1154 A, whose content(s) provide static
rounding. While in the described embodiments of the inven-
tion the round control field 1154A includes a suppress all
floating point exceptions (SAE) field 1156 and a round opera-
tion control field 1158, alternative embodiments may support
may encode both these concepts into the same field or only
have one or the other of these concepts/fields (e.g., may have
only the round operation control field 1158).

SAE field 1156—its content distinguishes whether or not
to disable the exception event reporting; when the SAE field’s
1156 content indicates suppression is enabled, a given
instruction does not report any kind of floating-point excep-
tion flag and does not raise any floating point exception han-
dler.

Round operation control field 1158—its content distin-
guishes which one of a group of rounding operations to per-
form (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 1158 allows for the changing of the rounding mode on a
per instruction basis. In one embodiment of the invention
where a processor includes a control register for specitying
rounding modes, the round operation control field’s 1150
content overrides that register value.

No Memory Access Instruction Templates—Data Trans-
form Type Operation

In the no memory access data transform type operation
1115 instruction template, the beta field 1154 is interpreted as
a data transform field 1154B, whose content distinguishes
which one of a number of data transforms is to be performed
(e.g., no data transform, swizzle, broadcast).

Inthe case of amemory access 1120 instruction template of
class A, the alpha field 1152 is interpreted as an eviction hint
field 1152B, whose content distinguishes which one of the
eviction hints is to be used (in FIG. 16 A, temporal 1152B.1
and non-temporal 1152B.2 are respectively specified for the
memory access, temporal 1125 instruction template and the
memory access, non-temporal 1130 instruction template),
while the beta field 1154 is interpreted as a data manipulation
field 1154C, whose content distinguishes which one of a
number of data manipulation operations (also known as
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primitives) is to be performed (e.g., no manipulation; broad-
cast; up conversion of a source; and down conversion of a
destination). The memory access 1120 instruction templates
include the scale field 1160, and optionally the displacement
field 1162 A or the displacement scale field 1162B.

Vector memory instructions perform vector loads from and
vector stores to memory, with conversion support. As with
regular vector instructions, vector memory instructions trans-
fer data from/to memory in a data element-wise fashion, with
the elements that are actually transferred is dictated by the
contents of the vector mask that is selected as the write mask.

Memory Access Instruction Templates—Temporal

Temporal data is data likely to be reused soon enough to
benefit from caching. This is, however, a hint, and different
processors may implement it in different ways, including
ignoring the hint entirely.

Memory Access Instruction Templates—Non-Temporal

Non-temporal data is data unlikely to be reused soon
enough to benefit from caching in the 1st-level cache and
should be given priority for eviction. This is, however, a hint,
and different processors may implement it in different ways,
including ignoring the hint entirely.

Instruction Templates of Class B

Inthe case of the instruction templates of class B, the alpha
field 1152 is interpreted as a write mask control (Z) field
1152C, whose content distinguishes whether the write mask-
ing controlled by the write mask field 1170 should be a
merging or a zeroing.

In the case of the non-memory access 1105 instruction
templates of class B, part of the beta field 1154 is interpreted
as an RL field 1157 A, whose content distinguishes which one
of the different augmentation operation types are to be per-
formed (e.g., round 1157A.1 and vector length (VSIZE)
1157 A2 are respectively specified for the no memory access,
write mask control, partial round control type operation 1112
instruction template and the no memory access, write mask
control, VSIZE type operation 1117 instruction template),
while the rest of the beta field 1154 distinguishes which of the
operations of the specified type is to be performed. In the no
memory access 1105 instruction templates, the scale field
1160, the displacement field 1162A, and the displacement
scale filed 1162B are not present.

Inthe no memory access, write mask control, partial round
control type operation 1110 instruction template, the rest of
the beta field 1154 is interpreted as a round operation field
1159A and exception event reporting is disabled (a given
instruction does not report any kind of floating-point excep-
tion flag and does not raise any floating point exception han-
dler).

Round operation control field 1159 A—just as round opera-
tion control field 1158, its content distinguishes which one of
a group of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest).
Thus, the round operation control field 1159A allows for the
changing of the rounding mode on a per instruction basis. In
one embodiment of the invention where a processor includes
a control register for specifying rounding modes, the round
operation control field’s 1150 content overrides that register
value.

In the no memory access, write mask control, VSIZE type
operation 1117 instruction template, the rest of the beta field
1154 is interpreted as a vector length field 1159B, whose
content distinguishes which one of a number of data vector
lengths is to be performed on (e.g., 128, 256, or 512 byte).

Inthe case of a memory access 1120 instruction template of
class B, part of the beta field 1154 is interpreted as a broadcast
field 1157B, whose content distinguishes whether or not the
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broadcast type data manipulation operation is to be per-
formed, while the rest of the beta field 1154 is interpreted the
vector length field 1159B. The memory access 1120 instruc-
tion templates include the scale field 1160, and optionally the
displacement field 1162A or the displacement scale field
1162B.

With regard to the generic vector friendly instruction for-
mat 1100, a full opcode field 1174 is shown including the
format field 1140, the base operation field 1142, and the data
element width field 1164. While one embodiment is shown
where the full opcode field 1174 includes all of these fields,
the full opcode field 1174 includes less than all of these fields
in embodiments that do not support all of them. The full
opcode field 1174 provides the operation code (opcode).

The augmentation operation field 1150, the data element
width field 1164, and the write mask field 1170 allow these
features to be specified on a per instruction basis in the
generic vector friendly instruction format.

The combination of write mask field and data element
width field create typed instructions in that they allow the
mask to be applied based on different data element widths.

The various instruction templates found within class A and
class B are beneficial in different situations. In some embodi-
ments of the invention, different processors or different cores
within a processor may support only class A, only class B, or
both classes. For instance, a high performance general pur-
pose out-of-order core intended for general-purpose comput-
ing may support only class B, a core intended primarily for
graphics and/or scientific (throughput) computing may sup-
port only class A, and a core intended for both may support
both (of course, a core that has some mix of templates and
instructions from both classes but not all templates and
instructions from both classes is within the purview of the
invention). Also, a single processor may include multiple
cores, all of which support the same class or in which different
cores support different class. For instance, in a processor with
separate graphics and general purpose cores, one of the
graphics cores intended primarily for graphics and/or scien-
tific computing may support only class A, while one or more
of the general purpose cores may be high performance gen-
eral purpose cores with out of order execution and register
renaming intended for general-purpose computing that sup-
port only class B. Another processor that does not have a
separate graphics core, may include one more general pur-
pose in-order or out-of-order cores that support both class A
and class B. Of course, features from one class may also be
implement in the other class in different embodiments of the
invention. Programs written in a high level language would be
put (e.g., just in time compiled or statically compiled) into an
variety of different executable forms, including: 1) a form
having only instructions of the class(es) supported by the
target processor for execution; or 2) a form having alternative
routines written using different combinations of the instruc-
tions of all classes and having control flow code that selects
the routines to execute based on the instructions supported by
the processor which is currently executing the code.

FIGS. 17A-B are block diagrams illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention. FIG. 17A shows a specific
vector friendly instruction format 1200 that is specific in the
sense that it specifies the location, size, interpretation, and
order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 1200 may be
used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing x86
instruction set and extension thereof (e.g., AVX). This format
remains consistent with the prefix encoding field, real opcode
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byte field, MOD R/M field, SIB field, displacement field, and
immediate fields of the existing x86 instruction set with
extensions. The fields from FIG. 17 into which the fields from
FIG. 18 map are illustrated.

It should be understood that, although embodiments of the
invention are described with reference to the specific vector
friendly instruction format 1200 in the context of the generic
vector friendly instruction format 1100 for illustrative pur-
poses, the invention is not limited to the specific vector
friendly instruction format 1200 except where claimed. For
example, the generic vector friendly instruction format 1100
contemplates a variety of possible sizes for the various fields,
while the specific vector friendly instruction format 1200 is
shown as having fields of specific sizes. By way of specific
example, while the data element width field 1164 is illustrated
as a one bit field in the specific vector friendly instruction
format 1200, the invention is not so limited (that is, the
generic vector friendly instruction format 1100 contemplates
other sizes of the data element width field 1164).

The generic vector friendly instruction format 1100
includes the following fields listed below in the order illus-
trated in FIG. 17A.

EVEX Prefix (Bytes 0-3) 1202—is encoded in a four-byte
form.

Format Field 1140 (EVEX Byte 0, bits [7:0])—the first
byte (EVEX Byte 0) is the format field 1140 and it contains
0x62 (the unique value used for distinguishing the vector
friendly instruction format in one embodiment of the inven-
tion).

The second-fourth bytes (EVEX Bytes 1-3) include a num-
ber of bit fields providing specific capability.

REX field 1205 (EVEX Byte 1, bits [7-5])—consists of a
EVEX R bit field (EVEX Byte 1, bit[7]-R), EVEX.X bit field
(EVEX byte 1, bit [6]-X), and 1157BEX byte 1, bit[5]-B).
The EVEX.R, EVEX X, and EVEX.B bit fields provide the
same functionality as the corresponding VEX bit fields, and
are encoded using 1s complement form, i.e. ZMMO is
encoded as 1111B, ZMM15 is encoded as 0000B. Other
fields of the instructions encode the lower three bits of the
register indexes as is known in the art (rrr, xxx, and bbb), so
that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEX R, EVEX.X, and EVEX.B.

REX' field 1110—this is the first part of the REX' field
1110 and is the EVEX.R' bit field (EVEX Byte 1, bit [4]-R")
that is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the invention,
this bit, along with others as indicated below, is stored in bit
inverted format to distinguish (in the well-known x86 32-bit
mode) from the BOUND instruction, whose real opcode byte
is 62, but does not accept in the MOD R/M field (described
below) the value of 11 in the MOD field; alternative embodi-
ments of the invention do not store this and the other indicated
bits below in the inverted format. A value of 1 is used to
encode the lower 16 registers. In other words, R'Rrrr is
formed by combining EVEX R', EVEX.R, and the other RRR
from other fields.

Opcode map field 1215 (EVEX byte 1, bits [3:0]-
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

Data element width field 1164 (EVEX byte 2, bit [7]-W)—
is represented by the notation EVEX.W. EVEX.W is used to
define the granularity (size) of the datatype (either 32-bit data
elements or 64-bit data elements).

EVEX.vvvv 1220 (EVEX Byte 2, bits [6:3]-vvvv)—the
role of EVEX .vvvv may include the following: 1) EVEX.v-
vvv encodes the first source register operand, specified in
inverted (1s complement) form and is valid for instructions
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with 2 or more source operands; 2) EVEX.vvvv encodes the
destination register operand, specified in 1s complement form
for certain vector shifts; or 3) EVEX.vvvv does not encode
any operand, the field is reserved and should contain 1111 b.
Thus, EVEX .vvvv field 1220 encodes the 4 low-order bits of
the first source register specifier stored in inverted (1s
complement) form. Depending on the instruction, an extra
different EVEX bit field is used to extend the specifier size to
32 registers.

EVEX.U 1168 Class field (EVEX byte 2, bit [2]-U)—If
EVEX.0=0, it indicates class A or EVEX.UO; if EVEX.0=1,
it indicates class B or EVEX.U1.

Prefix encoding field 1225 (EVEX byte 2, bits [1:0]-pp)—
provides additional bits for the base operation field. In addi-
tion to providing support for the legacy SSE instructions in
the EVEX prefix format, this also has the benefit of compact-
ing the SIMD prefix (rather than requiring a byte to express
the SIMD prefix, the EVEX prefix requires only 2 bits). Inone
embodiment, to support legacy SSE instructions that use a
SIMD prefix (66H, F2H, F3H) in both the legacy format and
in the EVEX prefix format, these legacy SIMD prefixes are
encoded into the SIMD prefix encoding field; and at runtime
are expanded into the legacy SIMD prefix prior to being
provided to the decoder’s PLA (so the PLA can execute both
the legacy and EVEX format of these legacy instructions
without modification). Although newer instructions could use
the EVEX prefix encoding field’s content directly as an
opcode extension, certain embodiments expand in a similar
fashion for consistency but allow for different meanings to be
specified by these legacy SIMD prefixes. An alternative
embodiment may redesign the PLLA to support the 2 bit SIMD
prefix encodings, and thus not require the expansion.

Alpha field 1152 (EVEX byte 3, bit [ 7]-EH; also known as
EVEX.EH, EVEX.rs, EVEX RL, EVEX .write mask control,
and EVEX.N; also illustrated with a)—as previously
described, this field is context specific.

Beta field 1154 (EVEX byte 3, bits [6:4]-SSS, also known
as EVEXs,, EVEXur,, EVEXurl, EVEXLLO,
EVEX.LLB; also illustrated with BPp)—as previously
described, this field is context specific.

REX' field 1110—this is the remainder of the REX' field
and is the EVEX. V' bit field (EVEX Byte 3, bit [3]-V") that
may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted
format. A value of 1 is used to encode the lower 16 registers.
In other words, V'VVVV is formed by combining EVEX. V',
EVEX.vvwv.

Write mask field 1170 (EVEX byte 3, bits [2:0]-kkk)—its
content specifies the index of a register in the write mask
registers as previously described. In one embodiment of the
invention, the specific value EVEX kkk=000 has a special
behavior implying no write mask is used for the particular
instruction (this may be implemented in a variety of ways
including the use of a write mask hardwired to all ones or
hardware that bypasses the masking hardware).

Real Opcode Field 1230 (Byte 4) is also known as the
opcode byte. Part of the opcode is specified in this field.

MOD R/M Field 1240 (Byte 5) includes MOD field 1242,
Reg field 1244, and R/M field 1246. As previously described,
the MOD field’s 1242 content distinguishes between memory
access and non-memory access operations. The role of Reg
field 1244 can be summarized to two situations: encoding
either the destination register operand or a source register
operand, or be treated as an opcode extension and not used to
encode any instruction operand. The role of R/M field 1246
may include the following: encoding the instruction operand
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that references a memory address, or encoding either the
destination register operand or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6)—As previously
described, the scale field’s 1150 content is used for memory
address generation. SIB.xxx 1254 and SIB.bbb 1256—the
contents of these fields have been previously referred to with
regard to the register indexes Xxxx and Bbbb.

Displacement field 1162A (Bytes 7-10)—when MOD field
1242 contains 10, bytes 7-10 are the displacement field
1162A, and it works the same as the legacy 32-bit displace-
ment (disp32) and works at byte granularity.

Displacement factor field 1162B (Byte 7)—when MOD
field 1242 contains 01, byte 7 is the displacement factor field
1162B. The location of this field is that same as that of the
legacy x86 instruction set 8-bit displacement (disp8), which
works at byte granularity. Since disp8 is sign extended, it can
only address between —128 and 127 bytes offsets; in terms of
64 byte cache lines, disp8 uses 8 bits that can be set to only
four really useful values —128, —64, 0, and 64; since a greater
range is often needed, disp32 is used; however, disp32
requires 4 bytes. In contrast to disp8 and disp32, the displace-
ment factor field 1162B is a reinterpretation of disp8; when
using displacement factor field 1162B, the actual displace-
ment is determined by the content of the displacement factor
field multiplied by the size of the memory operand access (N).
This type of displacement is referred to as disp8*N. This
reduces the average instruction length (a single byte of used
for the displacement but with a much greater range). Such
compressed displacement is based on the assumption that the
effective displacement is multiple of the granularity of the
memory access, and hence, the redundant low-order bits of
the address offset do not need to be encoded. In other words,
the displacement factor field 1162B substitutes the legacy x86
instruction set 8-bit displacement. Thus, the displacement
factor field 1162B is encoded the same way as an x86 instruc-
tion set 8-bit displacement (so no changes in the ModRM/SIB
encoding rules) with the only exception that disp8 is over-
loaded to disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpre-
tation of the displacement value by hardware (which needs to
scale the displacement by the size of the memory operand to
obtain a byte-wise address offset).

Immediate field 1172 operates as previously described.

Full Opcode Field

FIG. 17B is a block diagram illustrating the fields of the
specific vector friendly instruction format 1200 that make up
the full opcode field 1174 according to one embodiment of the
invention. Specifically, the full opcode field 1174 includes the
format field 1140, the base operation field 1142, and the data
element width (W) field 1164. The base operation field 1142
includes the prefix encoding field 1225, the opcode map field
1215, and the real opcode field 1230.

Register Index Field

FIG. 17C is a block diagram illustrating the fields of the
specific vector friendly instruction format 1200 that make up
the register index field 1144 according to one embodiment of
the invention. Specifically, the register index field 1144
includes the REX field 1205, the REX' field 1210, the
MODR/M.reg field 1244, the MODR/M.r/m field 1246, the
VVVV field 1220, xxx field 1254, and the bbb field 1256.

Augmentation Operation Field

FIG. 17D is a block diagram illustrating the fields of the
specific vector friendly instruction format 1200 that make up
the augmentation operation field 1150 according to one
embodiment of the invention. When the class (U) field 1168
contains 0, it signifies EVEX.UO (class A 1168A); when it
contains 1, it signifies EVEX.U1 (class B 1168B). When U=0
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and the MOD field 1242 contains 11 (signifying a no memory
access operation), the alpha field 1152 (EVEX byte 3, bit
[7]-EH) is interpreted as the rs field 1152A. When the rs field
1152A contains a 1 (round 1152A.1), the beta field 1154
(EVEX byte 3, bits [6:4]-SSS) is interpreted as the round
control field 1154 A. The round control field 1154 A includes
a one bit SAE field 1156 and a two bit round operation field
1158. When the rs field 1152A contains a 0 (data transform
1152A.2), the beta field 1154 (EVEX byte 3, bits [6:4]-SSS)
is interpreted as a three bit data transform field 1154B. When
U=0 and the MOD field 1242 contains 00, 01, or 10 (signi-
fying a memory access operation), the alpha field 1152
(EVEX byte 3, bit [7]-EH) is interpreted as the eviction hint
(EH) field 1152B and the beta field 1154 (EVEX byte 3, bits
[6:4]-SSS) is interpreted as a three bit data manipulation field
1154C.

When U=1, the alpha field 1152 (EVEX byte 3, bit[7]-EH)
is interpreted as the write mask control (7) field 1152C. When
U=1 and the MOD field 1242 contains 11 (signifying a no
memory access operation), part of the beta field 1154 (EVEX
byte 3, bit [4]-S,) is interpreted as the RL field 1157A; when
it contains a 1 (round 1157A.1) the rest of the beta field 1154
(EVEX byte 3, bit [6-5]-S,_) is interpreted as the round
operation field 1159A, while when the RL field 1157 A con-
tains a 0 (VSIZE 1157.A2) the rest of the beta field 1154
(EVEX byte 3, bit [6-5]-S, ;) is interpreted as the vector
length field 1159B (EVEX byte 3, bit [6-5]-L, ). When U=1
and the MOD field 1242 contains 00, 01, or 10 (signifying a
memory access operation), the beta field 1154 (EVEX byte 3,
bits [6:4]-SSS) is interpreted as the vector length field 1159B
(EVEX byte 3, bit [6-5]-L, ) and the broadcast field 1157B
(EVEX byte 3, bit [4]-B).

FIG. 18 is a block diagram of a register architecture 1300
according to one embodiment of the invention. In the embodi-
ment illustrated, there are 32 vector registers 1310 that are
512 bits wide; these registers are referenced as zmmO through
zmm31. The lower order 256 bits of the lower 16 zmm reg-
isters are overlaid on registers ymmO0-16. The lower order 128
bits of the lower 16 zmm registers (the lower order 128 bits of
the ymm registers) are overlaid on registers xmmO0-15. The
specific vector friendly instruction format 1200 operates on
these overlaid register file as illustrated in the below tables.

Adjustable

Vector Length Class Operations Registers

Instruction A (FIG. 11A; 1110, 1115, zmm registers

Templates that U=0) 1125,1130 (the vector

do not include length is 64 byte)

the vector length B (FIG. 11B; 1112 zmm registers

field 1159B U=1) (the vector
length is 64 byte)

Instruction B (FIG. 11B; 1117,1127 zmm, ymm, or

Templates that U=1) xXmim registers

do include the
vector length
field 1159B

(the vector
length is 64 byte,
32 byte, or 16
byte) depending
on the vector
length field
1159B

In other words, the vector length field 1159B selects
between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 1159B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format

10

15

20

25

30

35

40

45

50

55

60

65

22

1200 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher
order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

Write mask registers 1315—in the embodiment illustrated,
there are 8 write mask registers (kO through k7), each 64 bits
in size. In an alternate embodiment, the write mask registers
1315 are 16 bits in size. As previously described, in one
embodiment of the invention, the vector mask register kO
cannot be used as a write mask; when the encoding that would
normally indicate kO is used for a write mask, it selects a
hardwired write mask of OXFFFF, effectively disabling write
masking for that instruction.

General-purpose registers 1325—in the embodiment illus-
trated, there are sixteen 64-bit general-purpose registers that
are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by
the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, and
R8 through R15.

Scalar floating point stack register file (x87 stack) 1345, on
which is aliased the MMX packed integer flat register file
1350—in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87
instruction set extension; while the MMX registers are used to
perform operations on 64-bit packed integer data, as well as to
hold operands for some operations performed between the
MMX and XMM registers.

Alternative embodiments of the invention may use wider or
narrower registers. Additionally, alternative embodiments of
the invention may use more, less, or different register files and
registers.

An Exemplary Computer System

FIG. 19 is ablock diagram illustrating an exemplary clients
and servers which may be used in some embodiments of the
invention. It should be understood that while FIG. 19 illus-
trates various components of a computer system 1900, it is not
intended to represent any particular architecture or manner of
interconnecting the components as such details are not ger-
mane to the embodiments of the invention. It will be appre-
ciated that other computer systems that have fewer compo-
nents or more components may also be used with the
embodiments of invention.

As illustrated in FIG. 19, the computer system 1900, which
is a form of a data processing system, includes the intercon-
nect(s)/bus(es) 1901 communicatively coupling the proces-
sor cluster(s) 804 to the various other system components.
The interconnects/buses may include various levels of inter-
connection which may be connected to each other through
various bridges, controllers, and/or adapters as is well known
in the art. By way of example, the interconnect(s) 1901 may
include a quick path interconnect (QPI) component, a Periph-
eral Component Interconnect Express (“PCI Express”) com-
ponent, or other technologies for interconnecting the various
components to the processor cluster(s) 804. The underlying
principles of the invention are not limited to any particular
interconnects or buses.

Although illustrated as a separate component in FIG. 19,
the accelerator(s) 801 may be integrated within the processor
cluster(s) 804. Alternatively, some accelerator(s) may be inte-
grated within the processor cluster(s) and some may be con-
nected to the computer system via the interconnect(s)/
bus(es). As described in detail above, the accelerators are
adapted to efficiently execute certain types of program code
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(e.g., vector/SIMD operations, graphics operations, sort and
loop operations, etc). By way of example, the general purpose
processor clusters 804 may include execution logic within a
processor core for executing general purpose instructions
such as x86 instructions including instructions which invoke
commands on the accelerator clusters 801. The underlying
principles of the invention, however, are not limited to any
particular type of general purpose clusters or accelerator clus-
ters.

The embodiment illustrated in FIG. 19 also includes a
memory interface 1920 for coupling memory modules 1925
computer system. In one embodiment, the memory modules
1925 are dual in-line memory modules (DIMMs) such as
random access memory (RAM) modules and the memory
interface may generate the electrical signaling required to
access the memory modules 1925 (e.g., such as column
address strobe (CAS), row address strobe (RAS), write enable
(WE), and output enable (OE) signals).

In one embodiment, the memory interface 1920 comprises
logic and circuitry for interfacing with different types of
memory modules including volatile memory modules such as
RAM and non-volatile memory modules such as Phase-
Change Memory (PCM), also sometimes referred to as phase
change random access memory (PRAM or PCRAM), PCME,
Ovonic Unified Memory, or Chalcogenide RAM (C-RAM).
For example, one embodiment of the computer system 1900
implements a two-level (2L.) memory hierarchy comprising a
“near memory” portion which may be a volatile memory such
as RAM and a “far memory” portion which may be imple-
mented as a Phase-Change Memory (PCM). In such a case,
the memory interface may include the logic and circuitry
required to access both memory types.

The illustrated embodiment 1900 also includes one or
more storage interfaces 1918 for interfacing with storage
devices such as hard drives or other non-volatile storage
devices. In one embodiment, the storage interface 1918 com-
prises a serial ATA storage interface and the hard drive com-
prises a solid state drive (SSD) or a magnetic storage device.
In an embodiment of the invention which uses 2LLM memory
(as discussed above), a portion of the storage on the storage
device 1919 may be used for “far memory” (or a portion of
“far memory™).

The illustrated embodiment 1900 also includes a graphics
interface 1902 for interfacing with one or more graphics
processing units 1903. The GPUs may be embedded on a
motherboard of the computer system or on a separate card
inserted in the motherboard (e.g., via a PCI express graphics
interface, or other high speed graphics interface). A video
output interface 1904 such as a digital video interface (DVI]),
High-Definition Multimedia Interface (HDMI), or Display-
Port video output interface outputs a video stream to a moni-
tor 1905 which renders video for the end user. As mentioned,
the GPUs may be implemented as accelerator components for
executing graphics program code using any of the embodi-
ments described herein.

The illustrated embodiment 1900 also includes an audio
input interface 1916 for receiving multiple digital and analog
audio inputs. For example, a microphone may be coupled to
one of the audio input interfaces to capture the user’s voice
(e.g., during Web chats, phone calls, or for recording audio).
Additionally, a digital audio input may be used such as a
Toslink interface.

The illustrated embodiment 1900 also includes a sensor
hub 1915 for collecting data from various different system
sensors 1909. By way of example, and not limitation, the
sensors 1909 may include mechanical sensors, motion sen-
sors, and location sensors to detect a position and orientation
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of the computer system 1900. For example, in one embodi-
ment, the sensors may include multi-axis accelerometers for
detecting acceleration values along the X, Y, and 7 axes and
reporting to the data to the sensor hub. The sensor hub may
then perform calculations to determine a current orientation
of the computer system 1900. For example, if the computer
system is a notebook computer, the sensor hub may detect a
current position of the computer monitor. The sensors 1909
may also include inertial sensors for detecting displacements
from a reference location and/or proximity sensors for detect-
ing proximity to a user or other device. In one embodiment,
the sensors 1909 include a global positioning system (GPS)
sensor or other sensor for determining the current global
position of the computer system. The sensors 1909 may also
include a magnetometer for detecting the orientation of the
Earth’s electric field (i.e., to determine a current position of
the computing system relative to North). The sensors 1909
may also include a gyro for detecting changes in orientation
and an ambient light sensor for detecting current lighting
conditions (e.g., so that the sensor hub or other system com-
ponent may responsively adjust the brightness of the monitor
1905).

All of the data collected from the various sensors 1909 may
be used to determine a current mode of operation and respon-
sively adjust operation of the computing device 1900. For
example, in response to the signals from the sensors 1909 the
computing device may enter into a first mode of operation in
which in which the accelerator invocations described herein
are enabled and a second mode of operation in which the
accelerator invocations described herein are disabled.

The illustrated embodiment 1900 also includes a camera
interface 1914 for coupling to a video camera usable to cap-
ture motion video and still pictures. For example, in one
embodiment, the camera interface 1914 gathers motion video
for video conferencing applications in which the accelerator
invocation techniques described herein may be used. For
example, one accelerator may be configured to efficiently
encode video streams into the H.264/MPEG-4 AVC format. It
should be noted, however, that the underlying principles of
the invention are not limited to any particular video compres-
sion format.

The illustrated embodiment 1900 also includes a serial bus
interface for establishing serial data communication with
connected devices (e.g., mobile phones, tablets, printers,
external cameras, MIDI devices, etc). This embodiment fur-
ther includes an Ethernet interface 1912 for establishing net-
work connections over an Ethernet network and a cellular
interface 1911 for establishing voice and data connections
over a cellular network using cellular communication proto-
cols. Various cellular technologies may be employed includ-
ing, but not limited to 3rd Generation Partnership Project
technologies (e.g., 3GPP2) code division multiple access
technologies (e.g., CDMA2000 technology using 1xRTT/
EVDO/eHRPD); Long Term Evolution (LTE) technology
and/or LTE-Advanced (LTE-A) technology; and Universal
Mobile Telecommunications System (UMTS) technology
such as WCDMA/TDSCDMA. In addition, the embodiment
shown also includes a WiFi and/or Bluetooth interface 1910
for establishing communication over WiFi channels (e.g.,
802.11 channels) and/or Bluetooth channels, respectively.
Each of the Ethernet, Cellular, and WiFi communication
interfaces include a transceiver and other circuitry for gener-
ating analog transmission signals using the appropriate tech-
nology. In one embodiment, an accelerator may also be
invoked to support the network communication process (e.g.,
for performing network baseband functions such as data
encoding).
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The illustrated embodiment 1900 also includes a power
management interface 1917 for detecting current conditions
within the computer system (e.g., thermal, power usage, bat-
tery life, etc) and responsively adjusting power usage to each
of' the different system components. For example, under cer-
tain conditions, the the power management interface 1917
may turn off the accelerator functions described herein to
conserve power (e.g., when the battery drops below a thresh-
old value).

The illustrated embodiment 1900 also includes a power
management interface 1917 may also include various differ-
ent types of Input/Output devices such as a cursor control
(e.g., mouse, touchscreen, touchpad, etc.), a keyboard, etc.)
for receiving user input.

It will be appreciated that additional components, not
shown in FIG. 19, may also be a part of the data processing
system 1900 in certain embodiments of the invention, and in
certain embodiments of the invention fewer components than
shown in FIG. 19 may be used. In addition, it will be appre-
ciated that one or more buses and/or interconnects, not shown
in FIG. 19, may be used to interconnect the various compo-
nents as is well known in the art.

Embodiments of the invention may include various steps,
which have been described above. The steps may be embod-
ied in machine-executable instructions which may be used to
cause a general-purpose or special-purpose processor to per-
form the steps. Alternatively, these steps may be performed
by specific hardware components that contain hardwired
logic for performing the steps, or by any combination of
programmed computer components and custom hardware
components.

As described herein, instructions may refer to specific con-
figurations of hardware such as application specific inte-
grated circuits (ASICs) configured to perform certain opera-
tions or having a predetermined functionality or software
instructions stored in memory embodied in a non-transitory
computer readable medium. Thus, the techniques shown in
the figures can be implemented using code and data stored
and executed on one or more electronic devices (e.g., an end
station, a network element, etc.). Such electronic devices
store and communicate (internally and/or with other elec-
tronic devices over a network) code and data using computer
machine-readable media, such as non-transitory computer
machine-readable storage media (e.g., magnetic disks; opti-
cal disks; random access memory; read only memory; flash
memory devices; phase-change memory) and transitory com-
puter machine-readable communication media (e.g., electri-
cal, optical, acoustical or other form of propagated signals—
such as carrier waves, infrared signals, digital signals, etc.). In
addition, such electronic devices typically include a setofone
or more processors coupled to one or more other components,
such as one or more storage devices (non-transitory machine-
readable storage media), user input/output devices (e.g., a
keyboard, a touchscreen, and/or a display), and network con-
nections. The coupling of the set of processors and other
components is typically through one or more busses and
bridges (also termed as bus controllers). The storage device
and signals carrying the network traffic respectively represent
one or more machine-readable storage media and machine-
readable communication media. Thus, the storage device of a
given electronic device typically stores code and/or data for
execution on the set of one or more processors of that elec-
tronic device. Of course, one or more parts of an embodiment
of the invention may be implemented using different combi-
nations of software, firmware, and/or hardware. Throughout
this detailed description, for the purposes of explanation,
numerous specific details were set forth in order to provide a
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thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the invention
may be practiced without some of these specific details. In
certain instances, well known structures and functions were
not described in elaborate detail in order to avoid obscuring
the subject matter of the present invention. Accordingly, the
scope and spirit of the invention should be judged in terms of
the claims which follow.

What is claimed is:

1. A processor comprising:

an architectural register file implemented as a combination
of a register file cache and an architectural register
region within a level 1 (L1) data cache, wherein the
architectural register file is further implemented to store
data within a data memory area of the .1 data cache; and

a data location table (DLT) to store data indicating a loca-
tion of each architectural register within the register file
cache and/or the architectural register region within the
L1 data cache,

wherein in response to detecting that data stored in the data
memory area of the L1 data cache is needed for an
instruction, data is transferred from the memory area of
the [L1 data cache to the register file cache and/or the
architectural register region within the L1 data cache,
and wherein the transfer to the register file cache is
deferred until the data is actually needed for a computa-
tional instruction.

2. The processor as in claim 1 wherein the DLT comprises
an entry for each architectural register of the architectural
register file.

3. The processor as in claim 2 wherein the DLT comprises
a first column containing pointers to the register file cache.

4. The processor as in claim 3 wherein the DLT comprises
a second column containing pointers to the architectural reg-
ister region within the L1 data cache.

5. The processor as in claim 1 further comprising:

a lower level cache (LLC) for storing data, wherein in
response to detecting that the data needed for an instruc-
tion is not present in the register file cache and/or the
architectural register region within the L1 data cache,
data is transferred from the LLC to the register file cache
and/or the architectural register region within the L1
data cache.

6. The processor as in claim 1 further comprising:

a tag cache to store L1 tag values, the tag cache to be
queried to determine whether data needed for an instruc-
tion is stored within the L1 cache.

7. A method comprising:

implementing an architectural register file as a combina-
tion of a register file cache and an architectural register
region within a level 1 (1) data cache, and

storing data indicating a location of each architectural reg-
ister within the register file cache and/or the architec-
tural register region within the [.1 data cache within a
data location table (DLT) in response to detecting that
data needed for an instruction is not present in the reg-
ister file cache and/or the architectural register region
within the [.1 data cache, data being transferred from a
lower level cache (LLC) to the register file cache and/or
the architectural register region within the L1 data
cache, wherein the transfer to the register file cache is
deferred until the data is actually needed for a computa-
tional instruction.

8. The method as in claim 7 wherein the DLT comprises an

entry for each architectural register of the architectural reg-
ister file.
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9. The method as in claim 8 wherein the DLT comprises a
first column containing pointers to the register file cache.

10. The method as in claim 9 wherein the DLT comprises a
second column containing pointers to the architectural regis-
ter region within the [.1 data cache.

11. The method as in claim 7 wherein the architectural
register file is further implemented to store data within a data
memory area of the .1 data cache.

12. The method as in claim 11 wherein, in response to
detecting that data stored in the data memory area of the [.1
data cache is needed for an instruction, data is transferred
from the data memory area of the L1 data cache to the register
file cache and/or the architectural register region within the
L1 data cache.

13. The method as in claim 11 further comprising:

a tag cache to store L1 tag values, the tag cache to be

queried to determine whether data needed for an instruc-
tion is stored within the L1 cache.
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